Agreement

between Lithuania and Poland concerning the use of the broadcast band planned at the RRC 2006 conference.

Administration of Lithuania and Administration of Poland agreed on the following:

- 1. In the case that two or more assignments are operating in an SFN the basis for calculation of interference shall be the power sum of all transmitters in the relevant SFN.
- 2. Any other future implementation of an allotment shall be coordinated if the cumulative interfering field strength exceeds the values listed in Annex 1 on the area of any existing co-channel/co-block allotment.

Geneva, 08.06.2006

Rimvydas Bagdonavicius on behalf of the

Administration of Lithuania

Krystyna Roslan-Kuhn

on behalf of the

Administration of Poland

Annex 1 to agreement between Republic of Lithuania and Poland

Allowable interfering field strength calculation

For affected DVB-T it's proposed to use the $E_{max\,int}$ for RPC2 and for affected T-DAB it's proposed to use the $E_{max\,int}$ for RPC5.

DVB-T interfered by DVB-T for VHF and UHF respectively

Reference planning configuration	RPC2
Reference location probability	95%
Reference C/N [dB]	19
Reference (Emed)ref [dBµV/m] in VHF	67
Reference (Emed)ref [dBµV/m] in UHF	78
CF	12.8
IM for VHF	2.8
E _{max int} [dBμV/m] in VHF	38
E _{max int} [dBμV/m] in UHF	46,2

Table 1 Emax int for DVB-T interfered by DVB-T

T-DAB interfered with by T-DAB for VHF

Reference planning configuration	RPC5
Location probability	95%
Reference C/N [dB]	15
Reference $(E_{med})_{ref}$ [dB μ V/m]	66
CF .	14.6
IM	2.6
E _{max int} [dBμV/m]	39

Table 2 Emax int for T-DAB interfered by T-DAB

DVB-T interfered by T-DAB for VHF

Reference planning configuration	RPC2
Reference location probability	95%
Protection ratio [dB]	23.6
Reference (Emed)ref [dBµV/m] at 200 MHz	67
CF at 200 MHz	12.8
IM	2.4
E _{max int} [dBμV/m]	33

Table 3 Emaxint for DVB-T interfered by T-DAB

T-DAB interfered with by 7 MHz DVB-T and 8 MHz DVB-T respectively for VHF

Reference planning configuration	RPC5	
Location probability	95%	
Protection ratio [dB] for 7 MHz DVB-T interferer	9	
Protection ratio [dB] for 8 MHz DVB-T interferer	8	
Reference $(E_{med})_{ref}$ [dB μ V/m]	66	
CF	14.6	
IM	2.6	
E _{max int} [dBμV/m]] for 7 MHz DVB-T interferer	45	 -
E _{max int} [dBμV/m]] for 8 MHz DVB-T interferer	46	

Table 4 E_{max int} for T-DAB interfered with by DVB-T

Derivation maximum allowable interfering field strength

The maximum allowable interfering field strength, $E_{\rm maxint}$, at any test point given by the input requirement is calculated as follows:

$$E_{\text{max int}} = E_{med} - CF - PR + IM$$

where

 $E_{\it med}$ is the minimum median equivalent field strength (in dB μ V/m) for VHF and UHF, respectively;

CF is the combined location correction factor; $CF = q \sqrt{(\sigma_w^2 + \sigma_i^2)}$;

q is the distribution factor;

 σ_{w} is the standard deviation of the lognormal distribution of the wanted signal (in dB);

Oi is the standard deviation of the lognormal distribution of the interfering signal (in dB);

PR is the appropriate protection ratio;

When the interfering system is of the same type as the wanted one, PR is equal to C/N for the wanted system's RPC. PR and C/N are taken from Addendum 12 to Document 7-E, input from CEPT to RRC-06;

 \emph{IM} is the implementation margin (in dB) and is used only for VHF.