Agreement between Administrations of Russian Federation and Poland concerning the rules of protection for future implementation of the DVB-T and T-DAB records in a Plan, adopted at Regional Radiocommunication Conference (RRC-06)

For allotments of Russian Federation, mentioned in table given below, the following rule will be applied during the implementation of the plan:

Cumulative interference field strength, caused by assignments those are belonging to same group of Russian allotments, written below, should not exceed the values shown in Annex 1 at any test point on the border of Polish co-channel allotments in plan.

Groups of Russian allotments, which are subject of this agreement:

Group	Channel	Administration ID-s
1.	30	RUS30701, RUS301710, RUS301711, RUS_KALININGRAD_30, RUS_VESELOVKA_30
2.	32	RUS32701, RUS321711, , RUS_KALININGRAD_32
3.	34	RUS34701, RUS341711, RUS_KALININGRAD_34
4.	40	RUS40701, RUS401711, RUS_KALININGRAD_40
5.	41	RUS41701, RUS411711, RUS_KALININGRAD_41
6.	47	RUS47701, RUS471710, RUS471711, RUS_KALININGRAD_47, RUS_VESELOVKA_47

The parties agree that any future implementation of any allotment shall be coordinated if the cumulative interfering field strength exceeds the values listed in Annex 1 on the area of any exiting co-channel/co-block allotment.

Geneva, 01.06.2006

Viktor Strelets

on behalf of the

Administration of the Russian Federation

Krystyna Roslan-Kuhn

on behalf of the

Administration of Poland

Annex 1 to agreement between Russian Federation and Poland

Interfering field strength requiring coordination

If the cumulative interfering field strength exceeds the values listed in Table 1-4 below on the boundary of any existing co-channel/co-block allotment coordination with the affected administration is needed.

For affected DVB-T it's proposed to use the $E_{max\,int}$ for RPC2 and for affected T-DAB it's proposed to use the $E_{max\,int}$ for RPC5.

DVB-T interfered by DVB-T for 200 MHz and 650 MHz respectively

····	
Reference planning configuration	RPC2
Reference location probability	95%
Reference C/N [dB]	19
Reference (Emed)ref [dBμV/m] at 200 MHz	67
Reference (Emed)ref [dBμV/m] at 650 MHz	78
CF at 200 MHz	12.8
CF at 650 MHz	12.8
IM	2.8
E _{max int} [dBμV/m] at 200 MHz	38
E _{max int} [dBμV/m] at 650 MHz	49

Table 1 Emaxim for DVB-T interfered by DVB-T

In UHF the value should be adjusted with respect to frequency with $30*log(f/f_{650})$, f in MHz.

T-DAB interfered with by T-DAB for 200 MHz

1 BAB Interfered With by 1-DAB for 200 MINZ		
Reference planning configuration	RPC5	
Location probability	95%	
Reference C/N [dB]	15	
Reference $(E_{med})_{ref}$ [dB μ V/m]	66	
CF	14.6	
IM	2.6	
$E_{max int}[dB\mu V/m]$	39	

Table 2 E_{max int} for T-DAB interfered by T-DAB

DVB-T interfered by T-DAB for 200 MHz

Reference planning configuration	RPC2
Reference location probability	95%
Protection ratio [dB]	23.6
Reference (Emed)ref [dBµV/m] at 200 MHz	67
CF at 200 MHz	12.8
IM	2.4
$E_{max int} [dB\mu V/m]$	33

Table 3 Emax int for DVB-T interfered by T-DAB

T-DAB interfered with by 7 MHz DVB-T for 200 MHz

Reference planning configuration	RPC5
Location probability	95%
Protection ratio [dB]	9
Reference $(E_{med})_{ref}$ [dB μ V/m]	66
CF	14.6
IM	2,6
E _{max int} [dBμV/m]	45

Table 4 Emax int for T-DAB interfered with by 7 MHz DVB-T

Derivation maximum allowable interfering field strength

The maximum allowable interfering field strength, $E_{
m maxim}$, at any test point given by the input requirement is calculated as follows:

$$E_{\text{maxint}} = E_{\text{med}} + f_{corr} - CF - PR + IM$$

where

 E_{med} is the minimum median equivalent field strength (in dB μ V/m) for 200 MHz and 650 MHz, respectively;

 f_{corr} is the frequency correction (in dB) for UHF, given by 30*log(f/f₆₅₀), f in MHz;

CF is the combined location correction factor: $CF = q\sqrt{\left(\sigma_w^2 + \sigma_i^2\right)};$

q is the distribution factor;

Ow is the standard deviation of the lognormal distribution of the wanted signal (in dB);

Oi is the standard deviation of the lognormal distribution of the interfering signal (in dB);

PR is the appropriate protection ratio;

When the interfering system is of the same type as the wanted one, PR is equal to C/N for the wanted system's RPC PR and C/N are taken from Addendum 12 to Document 7-E, input from CEPT to RRG-06.

IM is the implementation margin (in dB).